

Terminal troubleshooting for Node 90

Inxip:

The `inxip` parameter represents the IP address of Aida. It must be set to the Aida IP where the nodes are connected, ensuring they can be controlled through Aida.

To configure inxip in the terminal:

1. Navigate to Nodes.
2. Select the Node Name/Serial you want to update.
3. Set the Request Type to PUT.
4. In the Data field, enter the Aida IP Address.

After Sending Command to Node, under Request Type, select “Get” to see the update.

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE network
CONTEXT inxip	QUERY Enter query here	DATA TYPE String	DATA 10.10.10.10

Results

CCCV:

CCCV Configuration

The **CCCV value** represents the node's voltage in multiples of 12.

- **1** = 12 Volts
- **2** = 24 Volts
- **3** = 36 Volts
- **4** = 48 Volts

To configure **CCCV** in the terminal:

1. Select the **PUT** request type.
2. In the **Data** field, enter the desired **CCCV value**.
3. Under **Actuators**, set the **Subpage** to **Actuator 1** or **Actuator 2** (as shown in the diagram below).

After Sending Command to Node, under Request Type, select "Get" to see the update.

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE actuators	SUBPAGE actuator1	PROPERTY Select
CONTEXT CCCV	QUERY Enter query here	DATA TYPE String		DATA 1	

Results:

Send Command To Node

Wattage

Wattage Configuration

- The Wattage parameter defines the total power delivery (in watts) of a node. Each node has specific power delivery limits, and the output power is distributed across its actuators.
- The wattage values you set must account for both the node's power capacity and the light fixture requirements, so they need to be selected carefully.

To configure wattage:

- Select the parameters for Actuator 1 as shown in the diagram.
- Repeat the same process for Actuator 2 in its subpage.
- In the Data field, enter the desired wattage multiplied by 10.
- Example: To set 12W on Actuator 1, enter 120 in the Data field.

After Sending Command to Node, under Request Type, select "Get" to see the update.

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE actuators	SUBPAGE actuator1	PROPERTY Select
CONTEXT maxw	QUERY Enter query here	DATA TYPE String	DATA 120	Send Command To Node	

Results:

Motion

Motion Enable/Disable Configuration

- You can enable motion on a node when pairing it with an occupancy or motion sensor. The motion variable is motdsbl, which accepts the following values:
 - 33 = Motion enabled
 - 3 = Motion disabled
 - Note: Motion only needs to be enabled on Actuator 1. There is no need to configure it for Actuator 2.

- Refer to the diagram below for setup instructions.

After Sending Command to Node, under Request Type, select “Get” to see the update.

Path Assembly

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE actuators	SUBPAGE actuator1	PROPERTY Select
CONTEXT motdsbl	QUERY Enter query here	DATA TYPE String	DATA 33		

Results:

FadeTime

FadeTime determines how long it takes for the lights to turn off:

- 0 seconds = instant lights out
- 2 seconds (recommended) = smooth, gradual fade out

To configure FadeTime:

1. Select the parameters as shown in the diagram below.
2. In the Data field, enter the desired fade time in milliseconds (value \times 1000).
 - o Example: For a 2-second fade, enter 2000.

After Sending Command to Node, under Request Type, select “Get” to see the update.

Path Assembly

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE actuators	SUBPAGE actuator1	PROPERTY Select
CONTEXT fadetime	QUERY Enter query here	DATA TYPE String	DATA 2000		

Results:

Motion policies

Motion sensor Policy Type

You can configure motion sensor Type on a node to define how lights respond:

- manual,vac = Manual ON / Auto OFF
- mot,vac = Auto ON / Auto OFF

To apply a motion sensor Policy Type:

1. Open the terminal and select the parameters as shown in the diagram below.
2. In the Data field, enter the appropriate policy string (manual,vac or mot,vac).

After Sending Command to Node, under Request Type, select “Get” to see the update.

Path Assembly

REQUEST TYPE PUT	NODES ND-35411	OR IP Enter IP here	PAGE sensors	SUBPAGE sensor1	PROPERTY Select
CONTEXT eventrisefall	QUERY Enter query here	DATA TYPE String	DATA manual,vac		

Auto on/ Auto off, ‘eventrisefall’ must be set to “mot,vac”

Manual on / Auto off, 'eventrisefall' must be set to 'manual,vac'

Results:

Results:

Scene Policies

Scene Policy Configuration

Policies can be assigned to scenes 1, 2, and 3 to control settings such as brightness. For example:

- Scene 1 → Brightness = 75
- Scene 2 → Brightness = 50
- Scene 3 → Brightness = 25

Refer to the diagram below for how to configure these scene values.

After Sending Command to Node, under Request Type, select “Get” to see the update.

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE policy
CONTEXT s2	QUERY Enter query here	DATA TYPE String	DATA 0,101,1,75,256

Results:

Motion and Vacancy

Motion & Vacancy Policy Configuration

In the example below:

- When motion is detected, the light brightness is set to 95% (from 0%).
- After 5 minutes of no motion (vacancy), the brightness gradually returns to 0%.

To configure:

1. Set the motion policy so that when motion is triggered, the node reaches 95% brightness.
2. Configure the vacancy timer to reduce brightness to 0 after 5 minutes of inactivity.

After Sending Command to Node, under Request Type, select "Get" to see the update.

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE policy
CONTEXT motion	QUERY Enter query here	DATA TYPE String	DATA 0,95,-1,101,256

Results:

Set vacancy policy as follows so that after 5 minutes, brightness is 0.

After Sending Command to Node, under Request Type, select “Get” to see the update.

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE policy
CONTEXT vacancy	QUERY Enter query here	DATA TYPE String	DATA 0,101,5,0,256

Results:

Percentage Power in Brightness

The pp value controls the brightness of the node:

- 100 = Maximum brightness
- 0 = Lights off

You can configure the pp value on Actuator 1, Actuator 2, or both. Follow the steps below:

1. Select the actuator(s) you want to configure.
2. Enter the desired pp value in the Data field.

After Sending Command to Node, under Request Type, select “Get” to see the update.

In the below example, pp is set to ‘53’ on Actuator 2.

Path Assembly

REQUEST TYPE PUT	NODES ND-34413	OR IP Enter IP here	PAGE actuators	SUBPAGE actuator2	PROPERTY Select
CONTEXT pp	QUERY Enter query here		DATA TYPE String	DATA 53	
<input type="button" value="Send Command To Node"/>					

Results:

```
"lightonen": "true",
"pwmfreq": "25000",
"shortdetect": "false",
"fadetime": 2000,
"pp": 53,
"lighton": true,
"voltage": 55243,
"current": 5,
"power": 0,
"vout": 0,
"iout": 0
```

Clusters:

A **cluster** is a group to which a node—or multiple nodes—can belong. You can also assign a **motion sensor** or **wall switch** to a cluster.

- When the **ON** button on a wall switch is pressed, it will control only the nodes within the same cluster.
- This allows different rooms or areas in a building to have separate clusters, each with their own wall switches and motion sensors.

Example: In the terminal below, the nodes **upOffice1** and **downOffice1** belong to the same cluster because they share **Cluster ID “41”**.

Path Assembly

REQUEST TYPE	NODES	OR IP	PAGE	SUBPAGE	PROPERTY
GET	upOffice1	Enter IP here	actuators	actuator1	context

Send Command To Node

Results:

Path Assembly

REQUEST TYPE	NODES	OR IP	PAGE	SUBPAGE	PROPERTY
GET	downOff...	Enter IP here	actuators	actuator1	context

Send Command To Node

Results:

In the example below:

- **Cluster ID “41”** corresponds to the cluster name **dbsoffice1**, which was created in the pull schedule.
- The two green boxes in the diagram represent:
 - **WS** = Wall Switch
 - **Input** = Motion Sensor

Both the wall switch and motion sensor are assigned to **Cluster ID 41**.

Wall switch cluster ID:

Path Assembly	REQUEST TYPE GET	NODES upOffice1	OR IP Enter IP here	PAGE sensors	SUBPAGE WallSwitch	PROPERTY context
<input type="button" value="Send Command To Node"/>						

Sensor Cluster ID:

Path Assembly

REQUEST TYPE	NODES	OR IP	PAGE	SURPAGE	PROPERTY
GET	upOffice1	Enter IP here	sensors	sensor1	context

Send Command To Node

Results: